
NORSE TECHNOLOGIES

A Description of the

TECHNICAL ENVIRONMENT

of

NORSE SYSTEMS INC. APPLICATION SOFTWARE

D. L. Hopper
January 2009



I. INTRODUCTION

Norse Systems Inc., in order to provide our clients with extraordinary business success,
provides management and administrative tools of extraordinary capabilities. At the root of
these capabilities lies our unique technologies.

There are certain basic tenets common to our technology. These include:

 Enterprise Database – Everybody in the organization works out of the same data set.
Show us an organization that has people running business critical functions on their
PCs and we'll show you an organization where the right hand does not know what the
left hand is doing.

 Accessibility – Whether in the office, at home, or on the road, all personnel who can
get access to the Internet, can get to the enterprise with an identical security profile as
from the office.

 Real-Time Transactions – When events happen, their implications must be public
immediately to all personnel. While certain processes, such as posting journals to the
General Ledger, may best be processed in 'Batch/on-demand' fashion, most
transactions should be reflected immediately. The instant a Charter is booked, it
should be visible to Dispatch.

 Knowledge rather than data – Data entry/maintenance processes to be sure must
capture structured information. In the case of customer records, Name, Address,
Contact People, Phone numbers, email, etc. Many of our competitors attempt to go
beyond these minimal requirements by allowing for limited 'Notes' fields, but we let you
attach an unlimited set of objects to the record. Correspondence documents, Credit
Evaluation Spreadsheets, Photographs, etc. When your personnel open a customers
folder (or Student, or Supplier, or Whatever) in the Norse environment, they have at
their finger tips ALL of the information that may be relevant to providing proper service.

 Security – While the system is a fully integrated 'enterprise', not everyone get access
to it all. Full, easily maintained profile specifications allow you to control of who can
see what, and who can do what.

 Respect for Users – Some like graphical screens with mouse navigation while other
prefer a 'Green Screen' approach. Each individual user gets their own preference.
Likewise some want spreadsheets which the system prepares for them to be MSOffice
formats, while others may prefer OpenOffice documents. Again, each person gets to
choose.

 T/P Efficiency – The 'tenets' of “Enterprise Database”, Internet accessibility and Real-
time transactions, cannot be attained via the sacrifice of 'responsiveness.' If screens
as complicated as those needed for Charter Booking, were implemented in '.html', the
'Paint-time' would be so painful your team could not get their days work done.

 T/P Efficiency – Optimized Browsers. Search capabilities which produce sub-second
lookup capabilities against tables numbering millions of rows.

 I/T Efficiency – Any/All customization of 3rd party software is done at the server. All
user PCs can be configured completely via download/install from public sources.

 I/T Efficiency – Customization and extensions. Powerful and extremely simple ad hoc
query capabilities to tabulate data into new reports and/or spreadsheets. Ability to



incorporate such queries into user menus. And easy extension of 'User Fields' in data
entry screens.

 Uniformity of Operation – Once you leard to operate one menu or one screen, you
know how to operate them all.

Achieving all these 'tenets of design' is not a trivial matter. As stated above, extraordinary
business success requires extraordinary tools. And these in turn require extraordinary
technologies. The key technology components are as follows:

 EasyCo – Secure/reliable VPN and Virtual Server provider.
 UniVerse – Proprietary multi-dimensional database from IBM.
 AccuTerm – Terminal Emulator/GUI Interface from AccuSoft.
 ScreenDriver – Proprietary Application Service of Norse Systems Inc.

On the pages that follow, we describe each of these technologies, their unique
capabilities,and how they combine to provide functionality unheard of (even unimagined) by
our competitors.



II. EASYCO TIMESHARE GATEWAY

http://www.easyco.com

Many system designs which centralize around a (remote) corporate database are susceptible
to any number of 'opportunities' (read as 'Problems') associated with Communications
Reliability and/or Security.

In the case of communications, lesser environments can suffer from line drops, power
outages, Internet provider issues, and other anomalous events. Problems range from
relatively innocuous 'having to re-do the work', to severe issues such as 'corrupted data' or
'unreleased database locks' which can have the effect of not letting users get back to work.

In the case of Security, lesser environments can be susceptible to hacker attacks, viruses,
unauthorized access, or even unauthorized manipulation of data.

The EasyCo Timeshare gateway prevents these problems. It provides 'software-based' (no
equipment required) VPN (Virtual Private Network) security as well as insulation from
interruption issues. With EasyCo, you cannot, in normal circumstances, get access with a
Web Browser, with TelNet, or with FTP services. (Although these can be made available if
needed.)

The gateway architecture comes in two parts. The first is local to your branch or office. The
second is on the server. At your branch, one machine on your LAN launches the local side of
the gateway. This process then contacts your server via the Internet and negotiates one or
more communications 'channels'. The number of channels is predefined and the two
machines (your LAN gateway machine and your corporate server) agree upon the encryption
algorithms they will use. Only after the secure gateway session is active, can it be used to
connect to the server.

Users within your branch can now log onto your corporate server. They do so by opening
their terminal emulator/graphical interface application (AccuTerm) and establishing a
connection (unsecured via your LAN) from their PC to the local end of the gateway
consuming one of its channels.

This configuration assures that all communication via public links (the Internet) are secure,
but it does much more than that. The part of the gateway running on the server is very
intelligent. It can distinguish different types of communication interrupts which might happen
and automatically sets up for the re-start process. When communication is restored, and the
user logs back in, they are returned to the same screen or menu where they were when the
failure happened. If they were within a data entry screen, they are restored to the exact same
screen, field, AND CHARACTER, where they were. Database update locks are preserved,
and transaction can proceed to 'commit' just as though there had never been an interruption.



III. UNIVERSE

www-306.ibm.com/software/data/u2/universe

At the core of your corporate server lies an extraordinary database product from IBM named
uniVerse. In contrast to RDBMS type databases (e.g. Oracle or Sequel Server) it is simple,
inexpensive, intuitive, and efficient. Your IT team will NOT have 'job security for life' with this
environment. On the performance measure, uniVerse out-performs RDBMS products by a
factor of 100 to 1. And for SQL/ODBC fans, “It's in there.”

The 'Tables' within this database are NOT a jumble, within a black box, intelligible only to
esoteric software products, licensed annually at outrageous costs, and to DBA staff salaried at
equally outrageous costs. Each Table corresponds directly to a single file in the OS directory.
Each has associated with it a data-dictionary to support SQL and other query tools.

Each record in each table is accessed directly via a record key. For example 'Part' records
are retrieved from the 'InventoryFile' via a 'PartNo.' Customer records are retrieved from the
'CustomerFile' via a 'CustomerNumb', etc.

This is NOT necessarily the case in RDBMS environments. In some RDBMS schema,
'CustomerInvoice' records might be accessible ONLY via a 'Pointer Chain' from a 'parent'
'Customer' record. -- handy for running 'Customer Statements' but horrendous for processes
not envisioned by the original schema designer. What if we want to query invoices evincing
sales of peanuts to anyone?

In addition to discrete files, and discrete access keys, uniVerse provides other extraordinary
capabilities. It is well beyond the scope of this document to describe the database in detail so
we'll highlight just a few others.

 Variable record and field sizes. -- The 'body' of any data record in any database table
is just a 'string' of characters. 'Fields' within the records are delimited by a special
character called an 'Attribute Mark'. (Represented by an '@' symbol in examples
shown in this document.) If we are talking about a customer record, and the first field
in the record is the customer name field, then the customer name is all of the
characters from the beginning of the string up to the first attribute mark. If the
customer name is 'ABC SUPPLY' then we are storing 10 characters. If we enroll a new
customer whose name is 'ALPHA BETA CONGLOMERATE AND WAREHOUSEING
SERVICE CORPORATION, INC.' that's just fine. The database doesn't care. (As
you'll see in the SCREEN.DRIVER section below, the data entry screens don't care
either. The system imposes no size limitations. Note that the dictionary of the
customer file may specify that the 'Name' field has a width of 20 characters, but even
this is no problem. If ALPHA BETA gets listed as a line on some report, it will actually
be shown in its entirety, in a column 20 bytes wide. It will simply consume 3 lines.

 Multi-Dimensional. -- This is also known as tables-within-tables. Just as 'Fields' within
a data record are delimited by attribute marks, there can be multiple values WITHIN a
field. They are simply separated by a different special character called a 'Value Mark'.
(Represented by a '\' symbol in examples shown in this document.) Fields containing
multiple values may or may not be 'correlated' with multiple values in other fields. As



an example lets think about an Inventory record. The record key is a part number.
Field 1 is the part description, field 2 is the warehouse code, and field 3 is the quantity
on-hand. An entire 'table' of part availability can exist within the single part record, as
follows:

10W30 SAE OIL@A\B\C@10\20\5

Part 10w30 is engine oil, and we have 10 units in warehouse 'A', 20 units in warehouse
'B', and 5 units in warehouse C.
In our architecture, with one 'database fetch' we have the entire view of the situation
relative to this part. Not only warehouse availability, but also pricing by customer class
and quantity breaks, Sales history by period, suppliers and supplier prices, etc. In an
RDBMS schema it would likely take 100 or more 'database fetch' operations to
assemble the comprehensive view.

 Dynamic Table 'Joins' – In both RDBMS and uniVerse environments, data is frequently
split between files. For example, an Invoice file may have a key of InvoiceNumber,
Field 1 is InvoiceDate, 2 is CustomerNumber, 3 is InvoiceAmount. In either
environment, if we wish a query, or report, which lists InvoiceNumber,
CustomerNumber, CustomerName, and InvoiceAmount, then we have a problem. We
are reporting from InvoiceFile and 'CustomerName' is NOT there. We have to do what
is called a 'Join' of InvoiceFile, with CustomerFile, keying on CustomerNumber.
RDBMS/SQL does this by copying data from both tables into a workspace and then
reporting from the workspace. The memory consumed in these processes frequently
leaves nothing left for regular users thus causing the entire system to run intolerably
slow. In uniVerse, by contrast, a 'Word' exists within the InvoiceFile data dictionary for
all four of our fields INCLUDING 'CustomerName'. Query processing does NOT
consume memory and T/P operations are consistently fast.

 Locking Strategy – It almost seems silly to mention this, but we have seen would-be
competitor packages, which still manage contention by file-level locks. These are
supposedly centralized enterprise databases, frequently '.NET' based, with a single
enterprise database somewhere accessible on the LAN. True, the database is
accessible by all, however, some packages have been known to produce messages
like “Charter Booking is being run by someone else, Please try later.” The wealth of
lock-tools provided by uniVerse enables us design applications such that contentrion
can occur ONLY at the unit record level.

 Secondary Access Keys – The strategic key behind our browsers ability to provide sub-
second search results, across millions of records, stems from this intrinsic uniVerse
tool. Most key tables have several secondary indicies enabling instantaneous view by
'non-key' access methods.

 Scalability – While there are not yet any Norse clients with requirements to do so, the
uniVerse/ScreenDriver combination has been shown to scale efficiently to levels at the
hundreds of millions of records, being accessed 10's of thousands of users. (3000+
concurrently active in a highly complex medical records application.)



IV. ACCUTERM

www.asent.com

The user's interface to the Norse System application is via a Terminal Emulator/GUI Interface
product named 'AccuTerm'. The product is from AccuSort Enterprises and provides a wealth
of capabilities. First it provides for session initiation and TelNet connection to the local
gateway, and thus to the corporate server. Secondly, it provides access to the M/S API
(Windows DNA) on the users PC. This enables host-based uniVerse programs to manipulate
windows, devices, and services. In other-words AccuTerm becomes the basis of the user
interface per se.



V. SCREEN.DRIVER

ScreenDriver is a proprietary product used and marketed exclusively by Norse Systems Inc.
It represents years of evolution and was the first 'Application Services' product, in the multi-
dimensional database world, to embrace the philosophy of Object Oriented (OO) design. This
is the philosophy which says to the programmer, 'If you did a copy and paste, you wrote it
wrong.”

There is only one data entry program – SCREEN. This 'Method' can be applied to any
properly defined database table. There is only one menu program – MENU. This 'Method'
can be applied to any properly defined item in the MENUS file.

Obviously, these programs/methods are smart. They look at, and react to, elements and
preferences which the user defined at sign-on time, they look at enterprise environment
variables set by system administrators, and they look at security profile settings set for the
user by administrators. Not all uses necessarily see the same Maintenance screen the same
way.

The OO implementation here is simplistic. Objects do not have a class hierarchy, and they
cannot inherit behaviors. These 'methods' have a one-to-one correspondence to database
tables where there are definitions which they can instantiate. As such these methods can be
equally thought of as 'utilities' in legacy programmer parlance.

The following table lists principle 'Methods/Utilities' which ScreenDriver offers, along with the
'Container/DataBaseTable' names which codify objects which can be instantiated.

Container(Table) Method(Utility) Description

SCREENS SCREEN Structured Data Entry Screens

MENUS MENU Application Software navigation menus

UMENUS MENU User defined (or modified) navigation menus

FileSelect GenFileSelect Generic Data Extraction (sub-set) table retriever

Browse Browse Find and Item (record) without knowing it's key

Menuobjects MOX Menu Object Xecutive – all selections, all menus

Operators OperatorExport Implement UserID Maintenance at the OS level

DDD BuildDict Implement revised Detail Database Definitions

DDD BuildINC Reconfigure Table Handlers

DDD BuildIndex Reconfigure Secondary Table Keys

ScrForms FormsReport Forms Printing with or without '.jpg' image overlays

FontSpec <Program Only> One class of Form Elements

FileName <Program Only> Name xRef table used in Table Handlers

ParaLib ParaRun Scripted 'Paragraph' procedures



AppImportCtrl AppImport Update client Corp server from Norse Corp server

CtlEntryDoc Help Documentation re System setup tables

<Program Built> GetArgs Self designing User Argument collector

GetArgsHelp Help Documentation re 'GetArgs' events

EZQ EzqGuiBuild GUI Query Designer (Dict Word Drag/Drop)

EZQ EZQ.EXEC MenuObject Query call method

ItemNotes NotesManager New/Edit/Link/De-Link text items attached to records

ObjIndex Attachments New/Edit/Link/De-Link DOS items attached to records

Tickler JournalManager New/Edit/Link/De-Link/Comply w/ ToDo assignments
(or make LogNotes) attached to records.

Various ListLog Review Application, Admin, and Software logs

SysMail SendSysMail Active Window e-mailer

As with any OO structure, simple events take the form a sequence of steps, most of which
are implementation of generic methods. For Example, within the Accounts Payable module,
there are menus which include selections to 'Analyze Cash Requirements', 'Print A/P Aging
Report', and 'Print A/P Checks' If our user selects the line that says 'Analyze Cash
Requirements', then the MENU method which is in control and will respond to the Operator
'Click' event may start a chain. The MENU method would instantiate a MenuObject named
'APCashReq' and then trigger it's launch 'MOX' method. The MOX Method may call for a
ParaLib object to run ParaRun. The first step of the ParaRun may be to invoke
'GenFileSelect' against the AccountsPayable Table. The first Step of the GenFileSelect may
call for a 'GetArgs' event, whereby the operator can specify the company, bank code, range of
dates, etc. While the GetArgs method is waiting for parameters, the operator may click the
'GetArgs' window 'Help' button. The 'Help' method is then invoked against and object
instantiated from the 'GetArgsHelpTable' a so a help window appears relative the FileSelect
Object from which GetArgs launched. After the Operator run-time arguments are entered,
The 'GenFileSelect' method resumes control and makes a list of all payable invoice numbers
which meet the Operators criteria. Once the list is complete, control returns to ParaRun
method which calls for instantiating an object from EZQ and invoking it's EXQ.EXEC method.
The EZQ Object definition may call for finding a pre-existing InvoiceList which the ParaObject
now has access to. Then the Date sorter. Then the SpreadSheet Tabulator, Then the
SpreadSheet Transmit to the client PC. Then then the appropriate spreadsheet program
invoke on the client., etc. etc. etc.

If instead of choosing 'Analyze Case Requirements' many of the steps and methods would be
identical. A MenuObject, MOX, ParaRun, GenFileSelect, GetArgs, ...

Application Development and maintenance in this architecture then becomes a process of
configuring Object Definitions. In almost all cases, the object definition items found in these
various containers, are maintained with the SCREEN method.


